skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravlić, Ante"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Properties of nuclei in hot stellar environments such as supernovae or neutron star mergers are largely unexplored. Since it is poorly understood how many protons and neutrons can be bound together in hot nuclei, we investigate the limits of nuclear existence (drip lines) at finite temperature. Here, we present mapping of nuclear drip lines at temperatures up to around 20 billion kelvins using the relativistic energy density functional theory (REDF), including treatment of thermal scattering of nucleons in the continuum. With extensive computational effort, the drip lines are determined using several REDFs with different underlying interactions, demonstrating considerable alterations of the neutron drip line with temperature increase, especially near the magic numbers. At temperatures T  ≲ 12 billion kelvins, the interplay between the properties of nuclear effective interaction, pairing, and temperature effects determines the nuclear binding. At higher temperatures, we find a surprizing result that the total number of bound nuclei increases with temperature due to thermal shell quenching. Our findings provide insight into nuclear landscape for hot nuclei, revealing that the nuclear drip lines should be viewed as limits that change dynamically with temperature. 
    more » « less